

© 1995 National Semiconductor Corporation TL/H/5655

RRD-B30M115/Printed in U. S. A.

lf Milita please	contact the Na	ecified dev itional Sen	ings vices are required, niconductor Sales nd specifications.	Power Dis (Notes T _i max		n	H Pack 670 n 150°	nW		N Packag 670 mW 115°C		
I		LF411A	LF411	θ _i A		162	2°C/W (Still Air)	120°C/W	/	
Supply Voltage		±22V ±38V	±18V	1		65°C	65°C/W (400 LF/m					
	Differential Input Voltage		$\pm 30V$					Flow)				
Input Vol (Note	tage Range	+ 19V	±15V	$\theta_{j}C$			20°C/W					
	hort Circuit	±19V	±15V	Operating Range	Operating Temp.		(Note	2)		(Note 3)		
Duratio		Continuou	s Continuous	Storage T	omn	(Note 3) (Not						
					emp.	-65	-65°C≤T₄≤150°C			C −65°C≤T _A ≤150°C		
				0	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
				(Solder	(Soldering, 10 sec.) 260°C				260°C			
				ESD Tole	olerance Rating					ng to be determined.		
DC EI	ectrical Ch	aracter	istics (Note 4)									
0h.e.l	Demonster				LF411A		LF411			Unite		
Symbol Parameter						LF4IIA			LF41	1	11	
			Conditions		Min	Тур	Max	Min	Тур	Max	Units	
V _{OS}	Input Offset Volta	age R _S =	Conditions 10 k Ω , T _A =25°C				1	Min		1	Units mV	
V_{OS} $\Delta V_{OS} / \Delta T$	Input Offset Volta Average TC of In Offset Voltage	<u> </u>				Тур	Max	Min	Тур	Max		
	Average TC of In	put R _S =	10 kΩ, T _A =25°C	Tj=25℃		Тур 0.3	Max 0.5	Min	Typ 0.8	Max 2.0 20	mV	
ΔV _{OS} /ΔT	Average TC of In Offset Voltage	put R _S =	10 kΩ, T _A =25°C 10 kΩ (Note 5)	$T_j=25^{\circ}C$ $T_j=70^{\circ}C$		Тур 0.3 7	Max 0.5 10	Min	Typ 0.8 7	Max 2.0 20 (Note 5)	mV μV/°C	
ΔV _{OS} /ΔT	Average TC of In Offset Voltage	put R _S =	10 kΩ, T _A =25°C 10 kΩ (Note 5) ±15V	J		Тур 0.3 7	Max 0.5 10 100	Min	Typ 0.8 7	Max 2.0 20 (Note 5) 100	mV μV/°C pA	
ΔV _{OS} /ΔT	Average TC of In Offset Voltage	put R _S =	10 kΩ, T _A =25°C 10 kΩ (Note 5) ±15V	T _j =70°C		Тур 0.3 7	Max 0.5 10 100 2	Min	Typ 0.8 7	Max 2.0 20 (Note 5) 100 2	mV μV/°C pA nA	
ΔV _{OS} /ΔT	Average TC of In Offset Voltage Input Offset Curro	put $R_S =$ ent $V_S =$ (Note	10 kΩ, $T_A = 25^{\circ}C$ 10 kΩ (Note 5) ± 15V 25 4, 6)	$T_j = 70^{\circ}C$ $T_j = 125^{\circ}C$		Typ 0.3 7 25	Max 0.5 10 100 2 25	Min	Typ 0.8 7 25	Max 2.0 20 (Note 5) 100 2 25	mV μV/°C pA nA nA	
ΔV _{OS} /ΔT	Average TC of In Offset Voltage Input Offset Curro	put $R_S =$ ent $V_S =$ (Note	10 kΩ, $T_A = 25^{\circ}C$ 10 kΩ (Note 5) ± 15V 25 4, 6) ± 15V	$T_j = 70^{\circ}C$ $T_j = 125^{\circ}C$ $T_j = 25^{\circ}C$		Typ 0.3 7 25	Max 0.5 10 100 2 25 200	Min	Typ 0.8 7 25	Max 2.0 20 (Note 5) 100 2 25 200	mV μV/°C pA nA nA pA	
ΔV _{OS} /ΔT	Average TC of In Offset Voltage Input Offset Curro	put R _S = ent V _S = (Note nt V _S =	10 kΩ, $T_A = 25^{\circ}C$ 10 kΩ (Note 5) ± 15V 25 4, 6) ± 15V 25 4, 6)	$T_j = 70^{\circ}C$ $T_j = 125^{\circ}C$ $T_j = 25^{\circ}C$ $T_j = 70^{\circ}C$		Typ 0.3 7 25	Max 0.5 10 2 25 200 4	Min	Typ 0.8 7 25	Max 2.0 20 (Note 5) 100 2 25 200 4	mV μV/°C pA nA nA pA nA	

R _{IN}	Input Resistance	T _j =25°C		10 ¹²			10 ¹²		Ω
A _{VOL}	Large Signal Voltage Gain	$V_{S} = \pm 15V, V_{O} = \pm 10V, \\ R_{L} = 2k, T_{A} = 25^{\circ}C$	50	200		25	200		V/mV
		Over Temperature	25	200		15	200		V/mV
VO	Output Voltage Swing	$V_{S} = \pm 15V, R_{L} = 10k$	±12	±13.5		±12	\pm 13.5		V
V _{CM}	Input Common-Mode		±16	+ 19.5		±11	+14.5		v
	Voltage Range			-16.5			-11.5		V
CMRR	Common-Mode Rejection Ratio	R _S ≤10k	80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)	80	100		70	100		dB
I _S	Supply Current			1.8	2.8		1.8	3.4	mA

AC Electrical Characteristics (Note 4)

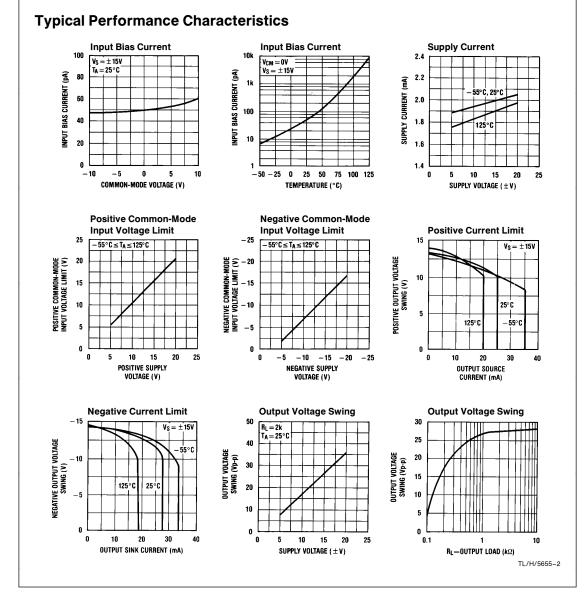
Symbol	Parameter	Conditions	LF411A			LF411			Units
Cymbol	T arameter	Conditions	Min	Тур	Max	Min	Тур	Max	onita
SR	Slew Rate	$V_{S} = \pm 15V, T_{A} = 25^{\circ}C$	10	15		8	15		V/µs
GBW	Gain-Bandwidth Product	$V_S = \pm 15V, T_A = 25^{\circ}C$	3	4		2.7	4		MHz
e _n	Equivalent Input Noise Voltage	$T_A = 25^{\circ}C, R_S = 100\Omega,$ f = 1 kHz		25			25		nV⁄/ √Hz
i _n	Equivalent Input Noise Current	T _A =25°C, f=1 kHz		0.01			0.01		pA ⁄⁄√Hz

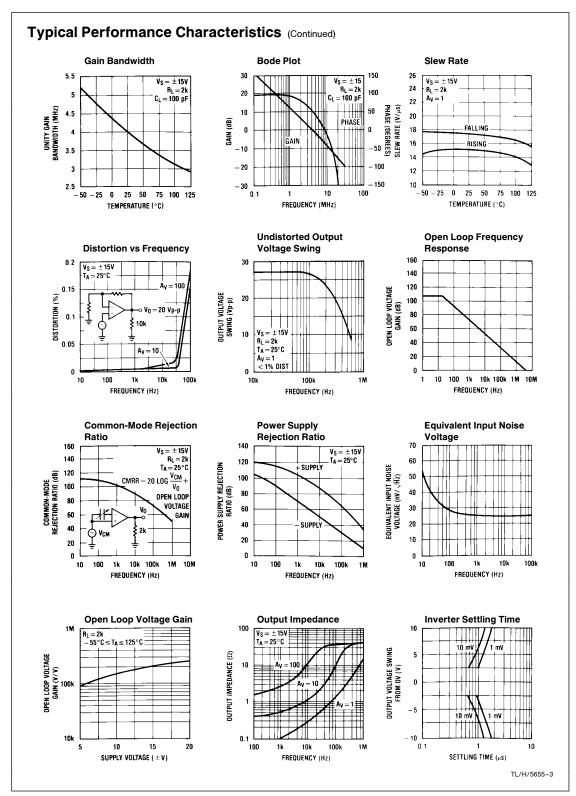
Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

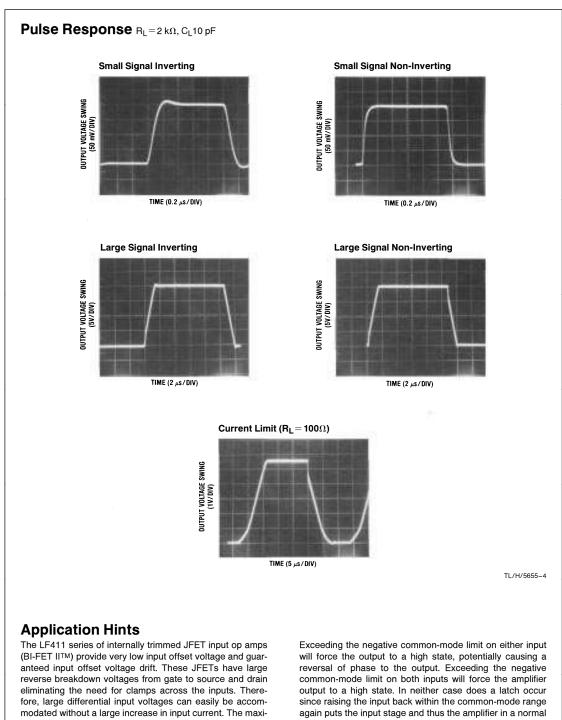
Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_i A$.

Note 3: These devices are available in both the commercial temperature range $0^{\circ}C \le T_A \le 70^{\circ}C$ and the military temperature range $-55^{\circ}C \le T_A \le 125^{\circ}C$. The temperature range is designated by the position just before the package type in the device number. A "C" indicates the commercial temperature range and an "M" indicates the military temperature range. The military temperature range is available in "H" package only.

Note 4: Unless otherwise specified, the specifications apply over the full temperature range and for $V_S = \pm 20V$ for the LF411A and for $V_S = \pm 15V$ for the LF411. V_{OS} , I_B , and I_{OS} are measured at $V_{CM} = 0$.


Note 5: The LF411A is 100% tested to this specification. The LF411 is sample tested to insure at least 90% of the units meet this specification.


Note 6: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_j . Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P_D . $T_j = T_A + \theta_{jA} P_D$ where θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.


Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice, from ±15V to ±5V for the LF411 and from ±20V to ±5V for the LF411A.

Note 8: RETS 411X for LF411MH and LF411MJ military specifications.

Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

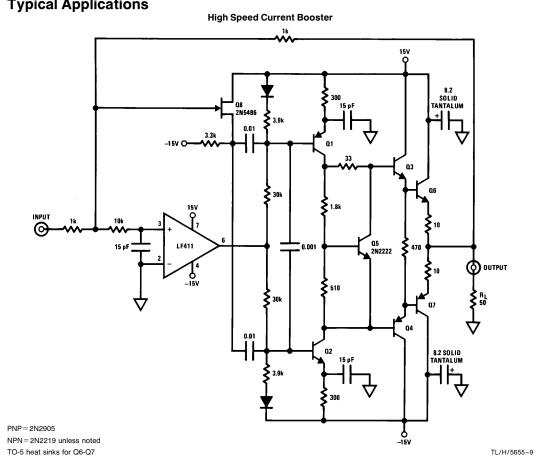
modated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

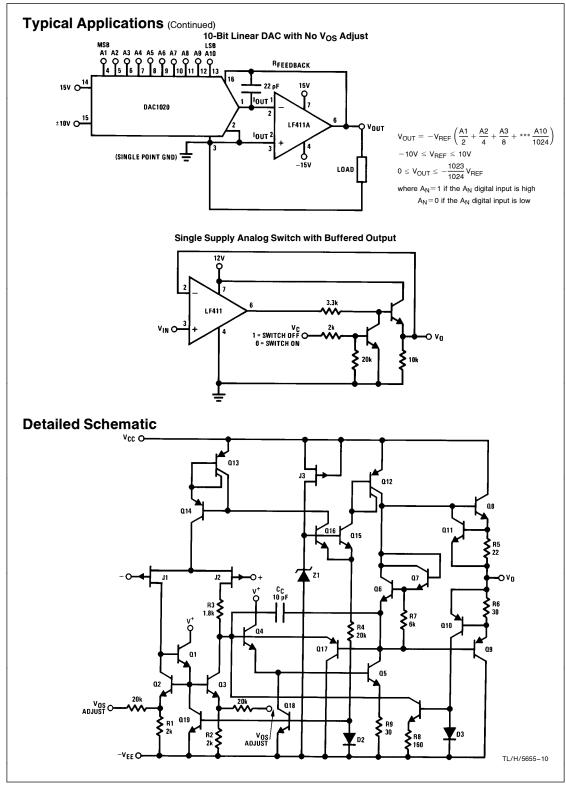
operating mode. Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.

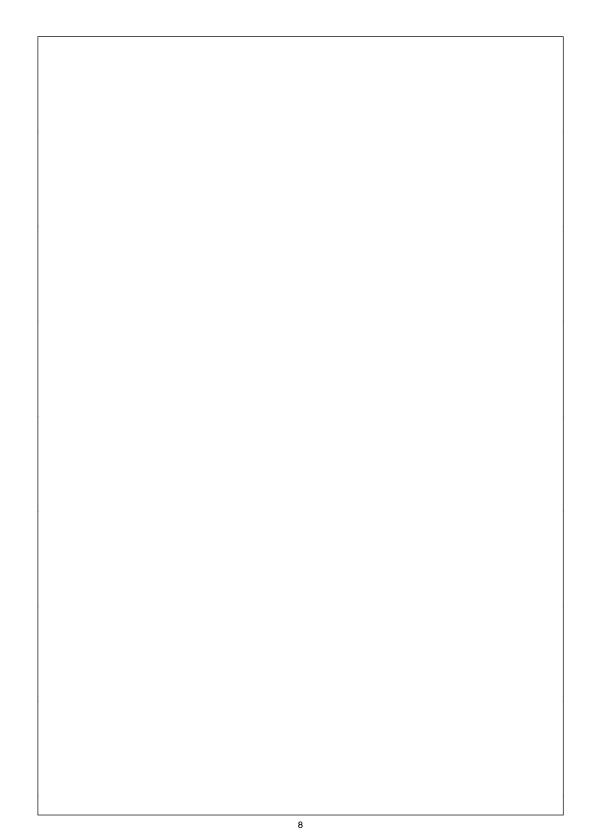
Application Hints (Continued)

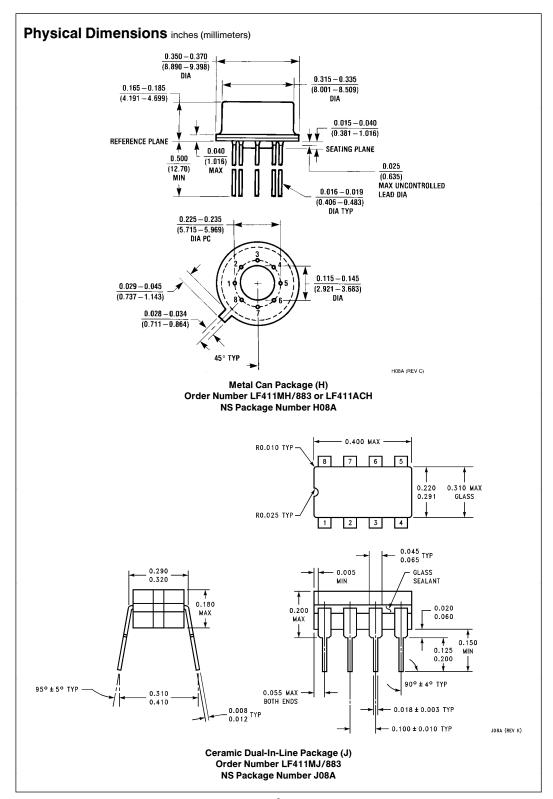
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

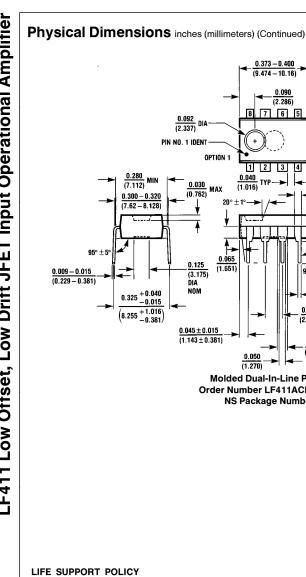
The LF411 is biased by a zener reference which allows normal circuit operation on $\pm 4.5 \text{V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.


The LF411 will drive a 2 k Ω load resistance to $\,\pm\,$ 10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swinas.


Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.


Typical Applications


As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to around.


A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

0.373 - 0.400(9.474 - 10.16) 0.090 8 7 6 5

1 2 3 4

0.040 (1.016) TYP

<u>0.050</u> (1.270)

Molded Dual-In-Line Package (N) Order Number LF411ACN or LF411CN NS Package Number N08E

+

 $\underline{0.250\pm0.005}$

 (6.35 ± 0.127)

¥

0.039 (0.991)

90[°] ± 4

TYP

 0.100 ± 0.010

(2.540±0.254)

0.060 (1.524)

 0.018 ± 0.003

 (0.457 ± 0.076)

 0.130 ± 0.005 (3.302±0.127)

0.125-0.140

(3.175 - 3.556)

0.092 (2.337) DIA

OPTION 1

204

0.065 (1.651)

0.030 (0.762) MAX

0.125 (3.175) DIA NOM

 0.045 ± 0.015 (1.143±0.381)

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

8 7

OPTION 2

N08E (REV F)

 $\frac{0.032 \pm 0.005}{(0.813 \pm 0.127)}$

PIN NO. 1 IDENT

0.020

(0.508) MIN

RAD

0.145-0.200

(3.683-5.080)

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 737-7018 National Semiconductor Europe Fax: (+49) 0-180-530 85 86 English Tel: (+49) 0-180-530 28 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 46 80	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (652) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
--	--	---

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LF411 - http://www.ti.com/product/lf411?HQS=TI-null-null-dscatalog-df-pf-null-wwe