

D8254

Programmable Interval Timer

ver 1.08

OVERVIEW

The D8254 is a programmable interval timer/counter, binary compatible with industry standard 82C54. The D8254 solves one of the most common problems in any micro-computer system, the generation of accurate time delays under software control. The D8254 can be used as a:

- Real time clock
- Even counter
- Digital one-shot
- Programmable rate generator
- Square wave generator
- Binary rate multiplier
- Complex waveform generator
- Complex motor controller

KEY FEATURES

- Three independent 16-bit counters
- Six programmable Counter modes
 - Interrupt on terminal count
 - Hardware retriggerable One-Shot
 - Rate Generator
 - Square wave mode
 - Software triggered strobe
 - Hardware triggered strobe
- Binary or BCD counting
- Status Read Back Command

All trademarks mentioned in this document are trademarks of their respective owners.

- Simple interface allows easy connection to microcontrollers
- Fully synthesizable, static design with no internal tri-states

DELIVERABLES

- Source code:
 - ♦ VHDL Source Code or/and
 - VERILOG Source Code or/and
 - ♦ Encrypted, or plain text EDIF netlist
- VHDL & VERILOG test bench environment
 - Active-HDL automatic simulation macros
 - ◊ ModelSim automatic simulation macros
 - ◊ Tests with reference responses
- Technical documentation
 - Installation notes
 - ◊ HDL core specification
 - ◊ Datasheet
- Synthesis scripts
- Example application
- Technical support
 - IP Core implementation support
 - 3 months maintenance
 - Delivery the IP Core updates, minor and major versions changes
 - Delivery the documentation updates
 - Phone & email support

http://www.DigitalCoreDesign.com http://www.dcd.pl

LICENSING

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.

<u>Single Design</u> license allows use IP Core in single FPGA bitstream and ASIC implementation.

<u>Unlimited Designs</u>, <u>One Year</u> licenses allow use IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time restriction except <u>One Year</u> license where time of use is limited to 12 months.

- Single Design license for
 - VHDL, Verilog source code called <u>HDL</u> <u>Source</u>
 - Encrypted, or plain text EDIF called <u>Netlist</u>
- One Year license for
 - Encrypted Netlist only
- Unlimited Designs license for
 - HDL Source
 - Netlist
- Upgrade from
 - HDL Source to Netlist
 - Single Design to Unlimited Designs

All trademarks mentioned in this document are trademarks of their respective owners.

PINS DESCRIPTION

PIN	TYPE	DESCRIPTION	
rst	input	Global reset	
datai(7:0)	input	Processor data bus (input)	
addr(1:0)	input	Processor address lines	
CS	input	Chip select	
rd	input	Processor read strobe	
wr	input	Processor write strobe	
clk0	input	Clock input for Counter 0	
gate0	input	Gate input for Counter 0	
clk1	input	Clock input for Counter 1	
gate1	input	Gate input for Counter 1	
clk2	input	Clock input for Counter 2	
gate2	input	Gate input for Counter 2	
datao(7:0)	output	Processor data bus (output)	
out0	output	Output of Counter 0	
out1	output	Output of Counter 1	
out2	output	Output of Counter 2	

BLOCK DIAGRAM

Read Write Logic - The Read/Write Logic accepts inputs from the system bus and generates control signals for the other functional blocks of the D8254. ADDR(1:0) select one of the three counters or the Control Word Register to be read from/written into. A "low" on the RD input tells the D8254 that the CPU is reading one of the counters. A "low" on the WR input tells the D8254 that the CPU is writing either a Control Word or an initial count. Both RD and WR are qualified by CS; RD and WR are ignored unless the 82C54 has

http://www.DigitalCoreDesign.com http://www.dcd.pl

SYMBOL

been selected by holding CS low. The WR and CLK signals should be synchronous. This is accomplished by using a CLK input signal to the D8254 counters which is a derivative of the system clock source. Another technique is to externally synchronize the WR and CLK input signals. This is done by gating WR with CLK.

Data Bus Buffer 8-bit buffer is used to interface the D8254 to the system bus.

Control Word - The Control Word Register is selected by the Read/Write Logic when ADDR(1:0) = 11. If the CPU then does a write operation to the D8254, the data is stored in the Control Word Register and is interpreted as a Control Word used to define the operation of the Counters.

COUNTERS BLOCK

DIAGRAM

All three Counters (0, 1, 2) are functionally identical and fully independent. Each can work as a 16 bit wide Binary or BCD counter, in one of the six available modes:

- Interrupt on terminal count
- Hardware retriggerable One-Shot
- Rate Generator
- Square wave mode
- Software triggered strobe
- Hardware triggered strobe

The internal block diagram of a single counter is shown in Figure below.

The central element of each Counter is **CE** module - Counting Element - 16 bit pre-

All trademarks mentioned in this document are trademarks of their respective owners.

settable synchronous down BIN/BCD counter.

Status Register, Status Latch – Status register contains actual mode declaration and value of output signal. Latched in Status Latch, after receiving Read-Back Command with STATUS Bit = 0.

Control Unit – Controls read/write operation and decrementing of CE.

CR M, CR L – Input data registers. When new count is written to counter, the count is written in the CR and later transferred to CE.

OL L, OL M – Output data registers. Latched when the suitable Counter Latch Command is sent to the D8254.

Control Word - The Control Word Register is selected by the Read/Write Logic when ADDR(1:0) = 11. If the CPU then does a write operation to the D8254, the data is stored in the Control Word Register and is interpreted as a Control Word used to define the operation of the Counters.

PERFORMANCE

The following table gives a survey about the Core area and performance in the AL-TERA® devices after Place & Route:

Device	Speed grade	Logic Cells	F _{max}
CYCLONE	-6		150 MHz
CYCLONE 2	-6		166 MHz
STRATIX	-5		181 MHz
STRATIX 2	-3		238 MHz
STRATIXGX	-5		185 MHz
MERCURY	-5		135 MHz
EXCALIBUR	-1		108 MHz
APEX II	-7		140 MHz
APEX20KC	-7		129 MHz
APEX20KE	-1		105 MHz
APEX20K	-1V		88 MHz
ACEX1K	-1		99 MHz
FLEX10KE	-1		102 MHz

Core performance in ALTERA® devices

http://www.DigitalCoreDesign.com http://www.dcd.pl

CONTACTS

For any modification or special request please contact to Digital Core Design or local distributors.

Headquarters:

Wroclawska 94

41-902 Bytom, POLAND

e-mail: info@dcd.pl

tel. : +48 32 282 82 66

fax :+48 32 282 74 37

Distributors:

Please check http://www.dcd.pl/apartn.php