

Ra-01H Specification

Version V1 copyright ©2019

Disclaimer and copyright notice

The information in this article, including the URL address for reference, is subject to change without prior notice.

The Documentation is provided "as is" without any warranty, including any warranties of merchantability, fitness for a particular purpose, or non-infringement, and any warranties mentioned in the proposal, specification or sample. This document is not responsible for any infringement of any patent rights arising out of the use of the information in this document. No license, express or implied, by estoppel or otherwise, is hereby granted.

The test data obtained in this paper are all obtained by Ai-Thinker laboratory, and the actual results may be slightly different.

The Wi-Fi alliance membership mark is owned by the WiFi alliance.

All trademark names, trademarks and registered trademarks mentioned are the property of their

Notes

The contents of this manual are subject to change due to product version upgrades or other reasons. Shenzhen Ai-thinker Technology Co., Ltd. reserves the right to modify the contents of this manual without any notice or prompt. This manual is for guidance only. Shenzhen Ai-thinker Technology Co., Ltd. makes every effort to provide accurate information in this manual. However, Shenzhen Ai-thinker Technology Co., Ltd. does not ensure that the contents of the manual are completely error-free. All statements and information in this manual. And the recommendations do not constitute any warranty, express or implied.

Dates	Version	Author	Version information
2019.9.20	V1.0	FAE.Junx	Original

Versions records

Product Overview

Ai-Thinker lora Series Module (ra-01) designed and developed by Ai-Thinker .This module is used for long distance spread spectrum communication., Its RF chip SX1276 (as show as figure 1) Mainly used LoRaTM remote modem, for ultra-long-distance spread spectrum communication, strong anti-interference, can minimize current consumption. With the help of the SEMTECH the patent technology of LoRaTM, SX1276 with -148dBm high sensititive, with +20dBm power output, long range transmission, high reliablity. Meantime, relative traditional modulation technique, LoRaTM modulation technique has obvious advantages in anti-blocking and selection, It solves the problem that traditional design scheme can not consider distance, anti-interference and power consumption simultaneously.

Its application can be automatic meter reading, home building automation, security system, remote irrigation system.

Figure 1 SX1276 Functional block diagram

Apperance

Features

- $LoRa^{TM}$ modem .

```
- support FSK、GFSK、MSK、GMSK、- LoRa<sup>™</sup> and OOK mode
```

 Low power consumption in a received stat, the received current is12.5mA, stand-by current is 1.6mA

- support 868/915MHz

- operating voltage is 3.3V, maximum output
- +19dBm, the maximum output current is105mA.
- high sensitivity: as low as-140dBm
- Small volume double row stamp hole patch package
- SPI interface, using half duplex communication, With CRC $\$ up to 256-byte packet engine

Main parameters

Module name	Ra-01
package	SMD-16
Size	17*16*3.2mm
Certificate	-
Support port	SPI interface
Programmable bit rate	Up to 300kbps
Spectrum range	803-930MHz
Antenna	Spring antenna
Power supply	3. 3V
Average operating current(Unit: mA)	868MHz Tx:103mA, Rx:12.15mA, Stanbdby:1.6mA; 915MHz Tx:97mA, Rx:12.15mA, Stanbdby:1.5mA;
Working temperature	-20 ℃ ~ 85℃
Storage environment	-40 °C $^{\sim}$ 125°C , $<$ 90%RH
weight	0. 46g

Charter 1.1 main parameters instruction

\Box > Pin definition

Ra-01 module with 16 interface, show as figure 2.1, table 2.2 is the interface definition. IFigure 2.1 Ra-01Pin diagram

Table 2.2 Pin function definition

Νο	Pin name	Function instruction
1	ANT	Antenna
2	GND	Ground
3	3. 3V	3.3V power supply (VDD)
4	RESET	Reset
5	DIOO	Digital IOO software configuration
6	DI01	Digital IO1 software configuration
7	DIO2	Digital IO2 software configuration
8	DIO3	Digital IO3 software configuration
9	GND	ground
10	DIO4	Digital IO4 software configuration
11	DI05	Digital IO5 software configuration
12	SCK	SPI clock input
13	MISO	SPI data output
14	MOSI	SPI data input
15	NSS	SPI Selection input
16	GND	ground

The six general IO pin of SX1276 can be available in LoRaTM mode.

Their mapping depends on the configuration of the two registers RegDioMapping1 and RegDioMapping2.

0per	DIOx	DI05	DIO4	DIO3	DIO2	DIO1	DIOO
atio	Mapp						
n	ing						
modu							

le							
	00	ModeReady	CadDetec	CadDone	FhssChange	RxRimeout	RxDone
			ted		Channel		
	01	C1kOut	P11Lock	ValidHeade	FhssChange	FhssChange	TxDone
all				r	Channel	Channel	
	10	C1kOut	P11Lock	PayloadCrc	FhssChange	CadDetected	CadDoe
				Error	Channel		
	11	-	-	-	-	-	-

\equiv **Functional description**

Transmitter

The SX1276's shooter consists of a frequency synthesizer, a modulator (LoRaTM and FSK/OOK modulator), and a power amplifier module---DC voltage offset and ramp up and ramp down via VR_PA.

Receiver

The SX1276 is equipped with a digital receiver that simulates the digital conversion process after the LNA and mixing module.

In addition to the LoRaTM modulation scheme, the low IF receiver can demodulate ASK, OOK, (G)FSK, and (G)MSK modulated signals.

Programs such as filtering, demodulation, gain control, synchronization, and packet processing are all digitally executed and more flexible to configure. The receiver also performs automatic gain calibration, which improves RSSI measurement accuracy and improves image rejection.

LoRaTM modem

The LoRaTM modem uses spread spectrum modulation and forward error correction. Compared with the traditional FSK or OOK modulation technology, this technology not only expands the coverage of the wireless communication link, but also improves the robustness of the link. Designers can adjust the spread factor and error correction rate to achieve a better balance between bandwidth usage, data rate, link budget improvement, and interference immunity. Another important feature of the LoRaTM modem is its greater immunity to interference. The rejection of the co-channel GMSK interference signal is 20 dB. Because of this strong anti-interference, the LoRaTM modulation system can not only use the frequency band with higher spectrum usage rate, but also can be used in the hybrid communication network to expand the coverage when the original modulation scheme fails in the network. After starting LoRaTM mode (ie setting the LongRangeMode bit of RegOpMode), you can view LoRaTM modulation.

The mode of operation of the demodulator. The range of functions and register accesses provided depends on the selected mode of operation, as detailed in the table below: send feedback history record

Operation mode	Description
Sleeping mode	Low power mode. In this mode, only the SPI and configuration registers are accessible and the LoRa FIFO is not accessible. This is the only mode of operation that allows switching between FSK/OOK mode and LoRa mode.
Working	The crystal oscillator and LoRa baseband module are turned on,

mode	while the RF section and PLL are turned off.
FSTx mode	This is a frequency synthesis mode for transmission. The selected
	transmit PLL is locked and remains active on the transmit frequency.
	The RF section is turned off.
FSRx mode	This is a frequency synthesis mode for reception. The selected
	receive PLL is locked and remains active on the receive frequency.
	The RF section is turned off.
TX mode	When this mode is activated, the SX1276 will turn on all modules
	required for transmission, turn on the power amplifier (PA), send
	packets, and switch back to standby mode.
RXconstant	When this mode is activated, the SX1276 will open all modules
mode	required for reception and process all received data until the client
	requests a change in operating mode.
RX single	When this mode is activated, the SX1276 will turn on all modules
mode	required for reception, maintain this state until a valid data packet is
	received, and then switch back to standby mode.
CAD mode	In CAD mode, the device will detect the known channel to detect the
	LoRa preamble signal.

You can switch from one mode to another by changing the value of the RegOpMode register.

四、 electrical parameters

Recommended working condition:

Working condition	Name	Minimum value	Typical value	Maxmum value	Unit
Working	TOPR	-40	20	85	Ĉ
temperature					
Power supply	VDD	1.8	3.3	3.6	V

Digital port characteristics:

10	Name	Minimum value	Typical value	Maxmum value	Unit
IO Level	VIO	1.8	3.3	3.6	V
Low input logic level	VIL	-	-	0.2	V
High input logic level	VIH	0.8	-	-	V
Low output logic level	VOL	-	-	0.1	V
High output logic	VOH	0.9	-	-	V
level					

SPI interface features:

Symbol	Description	Condition	Minimum value	Typical value	Maxmum	Unit
Fsck	SCK frequency	_	-	-	10	MHz
tch	SCK High time	-	50	-	-	ns
t _{c1}	SCK low time	-	50	_	-	ns
t_{rise}	SCK Rise Time	-	-	5	-	ns
t _{fall}	SCK fall Time	-	-	5	-	ns
t_{setup}	MOS time setting	Change from MOSI to the	30	-	-	ns
		rising edge of SCK				
t_{hold}	MOSI Duration	From the rising edge of SCK to the change of MOSI	20	-	-	ns
t _{nsetup}	NSS time setting	From the falling edge of	30	-	-	ns
		NSS to the rising edge of				
		SCL				
t_{nhold}	NSS duration	From the falling edge of	100	-	-	ns
		SCL to the rising edge of				
		NSS,				

		Normal mode				
t_{nhigh}	SPIAccess interval NSS	-	20	-	-	ns
	High time					
T_DATA	DATA maintenance and	-	250	-	-	ns
	setup time					

五、 Flow soldering graph

Refer to IPC/JEDEC standard : Peak Temperature : <250°C : Number of Times: ≤2 times :

六、 Circuit application

SX1276 chip requirements for MCU:

parameters	Minimum requirements	Recommended requirements
MCU RAM	8КВ	16KB
MCU FLASH	128KB	256KB
AES 128bits	AES decryption	Secure Element
Radio DIOs connected to MCU IRQ inputs	DIO0,DIO1,DIO2	DIO0,DIO1,DIO2,DIO3
SPI(4wires:SCK,MOSI,MISO,NSS)	Mandatory	
RTC(32.768kHz XTAL)	Recommended for accurate time keeping	Mandatory for Class B nodes smd

Company website: <u>https://www.ai-thinker.com</u> Developer Wiki: <u>http://wiki.ai-thinker.com</u> Company forum: http://bbs.ai-thinker.com Sampling purchasing: <u>https://anxinke.taobao.com</u> Business cooperation: sales@aithinker.com Technology support: support@aithinker.com

Company address: Seventh floor, Building B , xixiang street Baoan District,

Shenzhen, Guangdong

Contacts: 0755-29162996